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We study the interplay between electron correlation and disorder in the two-dimensional Hubbard model at
half filling by means of a variational wave function that can interpolate between Anderson and Mott insulators.
We give a detailed description of our improved variational state and explain how the physics of the Anderson-
Mott transition can be inferred from equal-time correlations functions, which can be easily computed within
the variational Monte Carlo scheme. The ground-state phase diagram is worked out in both the paramagnetic
and the magnetic sector. Whereas in the former a direct second-order Anderson-Mott transition is obtained,
when magnetism is allowed variationally, we find evidence for the formation of local magnetic moments that
order before the Mott transition. Although the localization length increases before the Mott transition, we have
no evidence for the stabilization of a true metallic phase. The effect of a frustrating next-nearest-neighbor
hopping ¢’ is also studied in some detail. In particular, we show that ¢’ has two primary effects. The first one
is the narrowing of the stability region of the magnetic Anderson insulator, also leading to a first-order
magnetic transition. The second and most important effect of a frustrating hopping term is the development of
a “glassy” phase at strong couplings, where many paramagnetic states, with disordered local moments, may be

stabilized.
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I. INTRODUCTION

Within independent-electron approaches, all single-
particle states are delocalized and the metallic or insulating
behavior is determined by the existence of an energy gap
between the highest occupied level and the lowest unoccu-
pied one. However, whenever the Coulomb interaction be-
comes dominant over the kinetic energy, the independent-
electron picture fails and electrons in the narrow bands close
to the Fermi energy become localized. Systems, whose insu-
lating character is induced by electron correlations, are called
Mott insulators." The presence of disorder weakens the con-
structive interference that allows a wave packet to propagate
coherently in a periodic potential and may eventually lead to
single-particle localization at the Fermi energy, hence to a
further class of insulating materials, called Anderson
insulators.” In this context, the conventional one-parameter
scaling theory of conductance® predicts that all solutions of
the single-particle Schrodinger equation in a disordered po-
tential are localized in two dimensions (2D). Therefore, any
amount of disorder in 2D drives a noninteracting electron
system into an Anderson insulator. The inclusion of electron-
electron interaction in weak coupling does not modify quali-
tatively the above conclusion,* although it may crucially af-
fect physical properties such as the tunneling density of
states (DOS).*> Hence, it is widely accepted that 2D electron
systems should always display an insulating behavior at suf-
ficiently low temperature or large size no matter how weak
the disorder is.

Nevertheless, from time to time some indications have
appeared that this conclusion might not be always correct.
Finkel’stein® and Castellani et al.” considered the interplay
between disorder and interaction by perturbative renormal-
ization group methods and showed that, for weak disorder
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and sufficiently strong interactions, a 2D system might scale
toward a phase with finite conductivity. However, this result
was not conclusive since the “metallic” region is found to
occur outside the theory’s limits of validity. Indeed, the com-
mon feature of these calculations is the crucial role played by
spin fluctuations that grow large as the renormalization pro-
cedure is iterated. This tendency has been commonly inter-
preted as the emergence of local moments concomitantly
with the progressive Anderson localization and, in con-
tinuum systems, it might signal an incipient ferromagnetic
instability.8 In lattice models, this is likely to be substituted
by a magnetic instability at some wave vector determined by
the topology of the Fermi surface. In this respect, an alterna-
tive approach could be to assume from the beginning a
strong interaction that drives the system into a local moment
regime, e.g., close to a magnetic Mott transition, and then
turn on disorder. However, since it is already difficult to
obtain an accurate description of a clean Mott transition, this
approach is very hard to pursue. Moreover, assuming the
scenario provided by dynamical mean-field theory (DMFT),’
one would immediately face with the so-called Harris
criterion.!? Indeed, the correlation-length exponent predicted
within DMFT for a clean Mott transition v»=1/2 is smaller
than 2/D=1 in D=2 dimensions.'""!? This fact implies that
the whole critical behavior has to be profoundly altered by
disorder, which therefore cannot be regarded at all as a weak
perturbation.

Only with the groundbreaking experimental work by
Kravchenko et al.,'>'* the statement that localization always
occurs in 2D was really put into question. In fact,
Kravchenko has been the first to observe and claim that,
above some critical carrier density, high-mobility silicon
metal-oxide-semiconductor field-effect transistors display a
metallic behavior, i.e., a resistivity that decreases with de-
creasing temperature down to the lowest accessible one. Be-
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low this critical density, the behavior of the resistance looks
insulating, thus suggesting that a metal-insulator transition
does occur by varying the density. This experimental finding
has renewed the interest in the interplay between disorder
and interaction and has generated further theoretical works
along the same direction originally put forward by
Finkel’stein, in the attempt to clarify some open issues and
the applicability of the approach.!>!® However, the issue of
having a genuine metallic phases in 2D is controversial and
remains under debate from both the experimental and the
theoretical point of view.!-1

An approach where neither the interaction nor the disor-
der are treated as a perturbation is therefore required to un-
derstand the complex physics of correlated disordered sys-
tems. The simplest model which contains both ingredients on
the same level is the disordered Hubbard model, which has
been intensively studied by several numerical methods, such
as Hartree-Fock calculations in two?®® and three
dimensions,?!?? extended DMFT,>*2® and quantum Monte
Carlo simulations.2®2 However, all these methods have
some drawback and only a combined analysis of comple-
mentary techniques can be able to clarify the nature of this
challenging problem. Any approach based on single-particle
descriptions, such as unrestricted Hartree-Fock,?** can un-
cover the emergence of an insulating gap only by forcing
magnetic long-range order. More sophisticated approaches,
like those based on DMFT,?*?* can, in principle, manage
without magnetism,>26-3435 but they usually miss important
spatial correlations. The spatial distribution of local moments
and its connection with Griffiths singularities, which may
emerge close to the Mott insulator,3® have been recently dis-
cussed within a Brinkmann-Rice approach of the Gutzwiller
wave function.’’

In Ref. 38, an improved approach based on a variational
wave function has been proposed to deal simultaneously
with the physics of Anderson’s and Mott’s localization. In
this work, we present an extensive and more complete study
of the ground-state properties of the disordered Hubbard
model in two dimensions at half filling. Moreover, we also
discuss in great details the variational method used in our
calculations. Within our approach it is possible to describe
both a direct transition between a compressible Anderson
insulator and an incompressible paramagnetic Mott phase
and a transition to a magnetically ordered insulator. In the
first part, we discuss the variational wave function and we
explain how it is possible to distinguish between Anderson
and Mott insulators, by means of static correlation functions.
In the second part, we describe paramagnetic and magnetic
transitions. By allowing for magnetic order, we show the
evidence for the formation of local magnetic moments that
order before the Mott transition. Finally, we introduce a frus-
trating (next-nearest-neighbor) hopping that favors a glassy
behavior with many different local minima (and presumably
long time scales).

The paper is organized as follows: in Sec. II we present
the method and the variational wave function that is used in
our calculations; in Sec. III we show the accuracy of our
method; in Sec. IV we show our numerical results for the
paramagnetic sector; in Sec. V we present the results for the
magnetic sector; finally, in Sec. VI we draw our conclusions.
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II. MODEL AND METHODS
A. Variational wave function

We consider the two-dimensional Hubbard model with
on-site disorder

H=— >, 1iiCi oCjot Hee + D €n; + U, ning s (1)

ij.o i i
where cZU (¢;o) creates (destroys) an electron at site i with
spin o, and n;=X,n, , is the local density operator. ¢; are
random on-site energies chosen independently at each site i
and uniformly distributed between [-D,D], U is the repul-
sive electron-electron interaction and ¢;; is the hopping am-
plitude. In the first part of this work, we consider only a
nearest-neighbor hopping term #=1 and, in the final part, we
also add a frustrating next-nearest-neighbor term #’. We con-
sider 45° rotated clusters with N=2/ sites at half filling, i.e.,
with N,=N electrons.

For U=0, the Hamiltonian (1) reduces to the Anderson
model for which the ground state is an Anderson insulator
for any value of D, with gapless charge excitation but local-
ized states. On the contrary, in the opposite limit U/t — e, all
charge fluctuations are suppressed, the system recovers trans-
lational invariance and the ground state becomes a Mott in-
sulator. In this work, we study the zero-temperature proper-
ties for finite disorder D and Coulomb interaction U, by
using the variational Monte Carlo algorithm. Our variational
ansatz for the ground state is given by

W) = JG|SD), 2)

where |SD) is an uncorrelated Slater determinant that is the
ground state of a mean-field Hamiltonian

Hur=— 2 Tclo0j o+ He 4 2 & oy 0, 3)

ij,o i,o

where 7;;=t for neighboring sites and € , are variational pa-
rameters; in addition the next-nearest-neighbor hopping 7;
=7" is also used as a variational parameter in case of a finite
value of ¢’ in the Hamiltonian. We consider both paramag-
netic and magnetic properties. In the former case, we impose
the wave function |¥) to be paramagnetic, by fixing the
variational parameters € | =¢; . On the contrary, in order to
study magnetic properties, we consider a variational wave
function that may break the spin-rotational symmetry,
namely, we allow the variational parameters to be € | # € ;.

A more general choice of the trial wave function could
also contain additional parameters for all (nearest-neighbor)
hopping terms 7; (with no translational invariance). Calcula-
tions performed on small lattices showed that, despite a
much larger computational effort, this ansatz leads only to
slightly lower energies, without modifying the ground-state
properties. Therefore, this possibility will be not considered
in the following.

The Gutzwiller factor G is defined by

G= exp[— > g,-n%] @)

and J is a long-range Jastrow term, defined by
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1
J=exp| - EE Uij(ni_ 1)(’1]— 1. (5)
L]

While the Gutzwiller factors have been defined with a differ-
ent parameter g; for each site in order to describe the nonho-
mogeneous character of the system, we only consider trans-
lational invariant v; j=v(|r,»—rj|). In the following, the
Fourier transform of the Jastrow parameters will be denoted
by v,. All these parameters can be optimized in order to
minimize the variational energy. The choice of taking trans-
lational invariant v;; is done in order to reduce the total
number of parameters and make the problem tractable from a
numerical point of view. Moreover, since the Jastrow factor
plays a primary role in the strong-coupling regime, where the
disorder effects are suppressed, this choice should not put
serious limitations to our variational wave function.

Summarizing, the variational parameters are (i) the on-site
energies €; , and, for t' # 0 the hopping 7’ of the mean-field
Hamiltonian (3), (ii) the Gutzwiller parameters g;, and (iii)
the translational invariant Jastrow parameters v, ;. The opti-
mization of the variational state, without assuming any par-
ticular parametric form, is done by an energy minimization,
which may deal with a large number (few hundreds) of
parameters.>’

B. Correlation functions

To work out the zero-temperature phase diagram, we
make use of the f-sum rule that allows us to interpret the
small-g behavior of density-density correlations. Starting
from the definition of the average energy of the excitations

= fa’wwNZ(w)’ ©)
JdwN ()

where N (w) is the dynamical structure factor. By integrating
over frequencies this quantity, we obtain the static structure
factor N,

d
N,= f N (@), (7)

We emphasize that N, can be easily calculated within the
Monte Carlo method through an equal-time density-density

correlation over the ground state
= (n_gng) = NG, (8)

where (n_,n,)= <\If|n_q ,'¥) indicates the quantum average
and the overbar denotes the disorder average. Notice that, in
order to have a correct definition of the dynamical structure
factor Nq(w), we have subtracted the disconnected term

NI = Tn_ )y, 9)

which is related to the elastic scattering of electrons and, in a
disordered system, is finite for generic momenta ¢.*° Notice
that, in a disordered system ¢ is no longer a good quantum
number but, nevertheless, the average over different disorder
configurations restores the translational invariance. This fact
suggests that the density-density structure factor N, can be a
meaningful quantity to assess physical properties.
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FIG. 1. (Color online) Density-density correlation function

(n_,n,) (upper panel), disconnected term Ndisc (middle panel), and
lq

N <n_qnq> Ndlsc (lower panel) for the noninteracting Anderson
, from which it is clear that

~|ql. Results are averaged over 48 disorder realizations with
D/t=5 for N=800 sites.

After a straightforward calculation, we arrive to a simple
expression of A, for small momenta

2

lim A, ~ q_. (10)
q—0 q

From this equation, we have the important result that N,

~|g| implies the existence of gapless charge modes, since
A,—0 for |g| —0, while if N, ~¢* charge excitations are
presumably gapped, since A, ~c0nst for |g|— 0. These cri-
teria have been already apphed with success to the fermionic
and bosonic Hubbard models without disorder,***? where it
has been demonstrated that it is possible to describe a true
Mott insulator by using a Jastrow-Slater wave function. In
addition, it has been shown that there is a tight connection
between N, and the Jastrow parameters v,. For a clean sys-
tem, a conducting state (metallic or superconducting in the
fermionic case and superfluid in the bosonic one) is charac-
terized by v,~1/ lg| in any spatial dimensions, whereas, in
order to correctly reproduce the static structure factor of a
Mott insulator, v, must be more singular, i.e., v,~1/ ¢* in
onc and two dimensions and v~ 1/|q|3 in three
dimensions.*!

Let us now turn to the disordered model. Before consid-
ering the interacting case, we would like to discuss the re-
sults for the noninteracting case and show that N,~|g| is
recovered, in agreement with the fact that the ground state is
compressible. In Fig. 1, we report the density-density corre-
lations (n_,n,) and the disconnected term N9 calculated for
a system with N=800 sites and disorder strength D/t=5,
averaged over 48 disorder realizations. It is clear that both
quantities are finite for g— 0. However, once we consider
the connected part of the density-density correlations N,, we
have that N, ~|g| for ¢— 0, in agreement with the fact that
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the Anderson insulator is gapless, see Fig. 1. We would like
to emphasize that, in contrast to the clean case where Nq
~|q| implies a conducting behavior, here it just indicates a
compressible state with gapless excitations, but not a metal-
lic character, because the single-particle states are localized.

III. ACCURACY OF THE WAVE FUNCTION

The variational energy landscape of the disordered Hub-
bard model may be characterized by the presence of different
local minima. In fact, if we start from different points in the
parameter space, namely, from different values of g;, v; I and
€ ,» we may converge to different solutions. In the following,
whenever we consider the paramagnetic sector, we impose
€ 1=¢;, along the whole optimization procedure. On the
other hand, when magnetic solutions are allowed, these con-
ditions are relaxed along the Monte Carlo simulation and the
two on-site energies (for up and down spins) are optimized
independently. In the latter case, the starting configuration
can be taken to be either paramagnetic (i.e., with € ;=€ |) or
with a small staggering of the magnetization [i.e., with €,
=&+0(=1)"il5, where & is a small quantity]. We would
like to stress that, even by considering a paramagnetic start-
ing point, the converged solution will generally have €
?é ‘é’i’l.

In contrast to the paramagnetic case, in which the energy
landscape usually has one minimum (i.e., the same param-
eters are obtained when starting from different initializa-
tions), when allowing a magnetic wave function different
local minima may appear. This feature is particularly evident
for large enough Coulomb repulsion, whereas in the weak-
coupling regime we recover a simple picture with only one
minimum. Remarkably, the appearance of different local
minima is related to the presence of short-range magnetic
correlations. In fact, by increasing the on-site Coulomb re-
pulsion, some sites acquire a finite magnetization and even-
tually order, giving rise to the typical staggered pattern.
Whenever local moments are present or the magnetization is
very small, there are different electronic arrangements that
give similar energies but may be hardly connected by simple
single-particle moves, so to define metastable local minima.
However, especially for the unfrustrated or the weakly frus-
trated case, the presence of these local minima is not a dra-
matic problem. In fact, generally, all physical quantities, as,
for instance, the density-density structure factor N,, give
similar results in all these cases. Therefore, we can safely
conclude that all the optimized states share the same physical
properties. As an example, Fig. 2 shows the on-site magne-
tization (m;)=(n;;—n, ) pattern for the variational wave
function optimized both starting from the paramagnetic point
and from the staggered point. It is evident that there is no
considerable difference between the two states, although
some of the magnetization values are slightly different.

We remark that, in most cases, we obtain a lower varia-
tional energy by starting from the paramagnetic point, even if
the final converged state is magnetically ordered. Therefore,
although in some particularly delicate cases we considered
different starting points, we usually initialize the simulation
with a paramagnetic configuration.
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FIG. 2. On-site magnetization (m;) for a typical disorder con-
figuration with D/t=5, U/t=10 (left panels) and U/r=16 (right
panels). The upper panels correspond to the wave function obtained
starting from a paramagnetic point, whereas the lower panels cor-
respond to the solution obtained from a staggered point. The black
contour shows the elementary cell of the lattice which is repeated to
mimic the infinite lattice with periodic boundary conditions.

Let us now discuss the accuracy in energy for a 4 X4
lattice, where the exact ground state can be calculated ex-
actly by the Lanczos algorithm. In particular, we consider
four different wave functions: (i) the magnetic state with
on-site Gutzwiller and Jastrow factors (that corresponds to
our best ansatz), (ii) the paramagnetic state with Gutzwiller
and Jastrow terms, (iii) the magnetic state with only
Gutzwiller projectors, and (iv) the magnetic mean-field state
|SD) (i.e., without any correlation term). For U=0, the exact
ground-state wave function can be obtained in all these
cases, implying a very good accuracy also for small but finite
values of U/t. For small interactions there is no appreciable
differences between paramagnetic and magnetic wave func-
tions and for all correlated states the accuracy in the energy,
i.e., (Ey—E,)/E, (where E, and E, are the exact and the
variational energies, respectively) is lower than 1%. How-
ever, even for U/t=4, the Hartree-Fock state, with no
Gutzwiller and Jastrow factors, give a much worse accuracy
than the other three correlated wave functions, see Fig. 3. For
larger values of the interaction U, the situation is different,
since the paramagnetic state is generally worse than the mag-
netic wave functions, including the Hartree-Fock state. The
accuracy of our best ansatz is about 10% (or less) up to very
large Coulomb repulsions, which is acceptable in a disor-
dered model. However, we notice that the long-range Jastrow
factor is not crucial, and wave functions (i) and (iii) give
comparable energies both for small and large interaction val-
ues, e.g., U/t=4 and 16, see Fig. 3. In fact, on the one hand,
the on-site Gutzwiller factor can easily account for the small
charge correlations induced by the Coulomb repulsion in the
weak-coupling regime. On the other hand, for large U/t, the
ground state has strong magnetic correlations and is well
described with a (gapped) mean-field state. In the intermedi-
ate regime, our magnetic state with both on-site Gutzwiller
projectors and the long-range Jastrow term may give a con-
siderable improvement over the other states considered here.
It should be stressed, however, that the Jastrow factor is es-
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FIG. 3. Accuracy of the variational energies AE=(Ey,—E,)
(where E and E,, are the exact and the variational energies, respec-
tively) for different wave functions on a 4 X4 lattice with D/r=5:
the correlated magnetic state (full squares), the paramagnetic state
(empty circles), the magnetic state without Jastrow factors (empty
squares), and the Hartree-Fock state (full circles). The exact
ground-state energy is computed by the Lanczos algorithm.

sential to have a paramagnetic Mott insulator, since in this
case the charge gap cannot be opened by an uncorrelated
Hartree-Fock state. On the contrary, in the magnetic case,
long-range Jastrow correlations are not strictly necessary to
capture the correct nature of the ground state, since the
charge gap can be naturally created by a finite antiferromag-
netic mean-field parameter.

IV. RESULTS: THE PARAMAGNETIC CASE

Let us start our analysis of the disordered Hubbard Hamil-
tonian (1) by enforcing a paramagnetic variational wave
function, e.g., by fixing the constraint € ;=¢; | for the param-
eters of the auxiliary mean-field Hamiltonian (3). Although
this choice is biased, since antiferromagnetic order may be
present for finite electron-electron interaction, it gives sig-
nificant insights into the interplay between disorder and in-
teraction, without any “spurious” effect due to magnetism.
We apply the f-sum rule to distinguish the compressible
Anderson insulator from the incompressible Mott insulator,
i.e., we look at the different behavior of Nq and Vg for dif-
ferent values of interaction U and disorder D. Here, we take
a rather strong disorder (D/r=4, 5, and 6) in order to have a
localization length that is smaller than the numerically acces-
sible system sizes.

A detailed analysis of these quantities allows us to iden-
tify the Mott transition at UM'=(11.5=0.5)¢ for D/t=5.%
Indeed, for small values of the interaction strength, i.e., for
U<UM, we have that N,~l|g|, whereas N,~q* in the
strong-coupling regime U> Uf,/“. The latter behavior is
symptomatic of the presence of a charge gap hence of a Mott
insulating behavior.*! We would like to emphasize that the
present results are qualitatively similar to those obtained
within the clean Hubbard model, with linear coefficient of N,
going smoothly to zero at the phase transition, indicating that
the transition is likely to be continuous. We mention that the

PHYSICAL REVIEW B 81, 075106 (2010)

04
q=(n/7,m/7)

o 03+
L2
T T
Pz

0.1

0.0 By,

0 2 10 12 14 16

8
Uit
FIG. 4. (Color online) Disconnected part of the density-density

correlation function Njisc for the smallest ¢ as a function of the
interaction U for D/t=5 and N=98 sites.

Fourier transform v, of the optimized Jastrow parameters v, ;
is also compatible with a Mott transition at the same value of
the interaction strength, with its small-g behavior changing
from v,~1/|q| to v,~1/4* across the Mott transition.*®

Most interestingly we find that NS‘SC goes continuously to
zero at the phase transition, see Fig. 4. This fact allows us to
identify a simple and variationally accessible quantity to dis-
tinguish between an Anderson insulator and a Mott insulator.
We would like to stress that this behavior is not restricted to
q— 0, but we recover a similar trend also for finite momenta,
although disorder fluctuations are larger for larger g vectors,
see Fig. 5. These results demonstrate that charge fluctuations
are strongly suppressed and eventually become local as U/t
increases.

All these results suggest that disorder is strongly sup-
pressed in the regime of strong correlations. This fact is also
corroborated by the calculation of the variance of the distri-
bution of the on-site energies €; ,, which was shown in Ref.
38. Previous Monte Carlo calculations have shown that a
repulsive interaction may screen the local energies, thereby
generating an effectively weaker random potential.® At the
mean-field level*® and beyond,?* the screening effects have
been widely discussed. The Hartree-Fock state leads to a
disorder screening only for moderate interactions, while it
gives almost unscreened on-site energies in the strongly cor-
related regime. On the contrary, our correlated variational
approach is able to capture the correct physics also for large
interaction U, where the disorder, though finite, is highly
suppressed. The redistribution of on-site energies leads to a
decreased localization of the electronic state at the Fermi
level. Nevertheless, the single-particle eigenstates are always
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FIG. 5. (Color online) The same as in Fig. 4 for different
momenta.

075106-5



MARIA ELISABETTA PEZZOLI AND FEDERICO BECCA

0.14 ¢

o 012} ]
= 010 | f ]
008}t ‘ L E

0.14 +
o 0.12
Z 010} YU

cosf ¥

0 /2 b 3n/2
lq

FIG. 6. (Color online) Static structure factor N,, divided by g as
a function of |g| for different values of the interaction U. Upper
panel: U/t=2 (circles), 3 (upward triangles), 4 (squares), and 5
(downward triangles). Lower panel: U/t=6 (circles), 7 (upward tri-
angles), 8 (squares), and 9 (downward triangles). Calculations have
been done for D/t=5 and N=98 sites.

localized, even though a very large localization length may
develop. Within our variational approach, a important ques-
tion is whether the action of the Gutzwiller correlator and the
Jastrow factor could turn a localized |SD) into a delocalized
many-body state |¥). Unfortunately, the variational method
does not give access to dynamical quantities and, therefore,
we cannot make a definite statement. Nevertheless, we tend
to believe that such a transmutation of a localized |SD) into a
delocalized | W) is unlikely. In any case, the previous results
show an increase in the “metallicity” of the ground state with
a partial screening of disorder. This result is in agreement
with the fact that the linear slope of N, has a nonmonotonic
behavior as a function of U, showing a peak for U/t~ 7 that
indicates an accumulation of low-energy states around the
Fermi energy, see Fig. 6. In fact, the linear slope of N, is
related to the compressibility of the system. Nevertheless, it
has to be noticed that the Slater determinant |[SD) is the
ground state of a mean-field Hamiltonian that always de-
scribes noninteracting electrons with on-site disorder, no
matter how large the Coulomb repulsion is. Therefore, even
though the single-particle eigenstates may have a very long
localization length because of the suppression of the effec-
tive on-site disorder, yet this length remains finite in two
dimensions.

The analysis of the density-density correlation function,
the Jastrow factor and Nglsc for different values of D/t allows
us to draw the paramagnetic phase diagram in the (U,D)
plane, see Fig. 7. Finally, in order to gain a deeper under-
standing on the local behavior, namely, how each single site
behaves across the Anderson-Mott transition, we introduce a
local f-sum rule

_2i(q)
Al )_W' (11)

Here N;(¢q) defines the local static structure factor
1
Nj(CI) = Xlz <ninj>connelq(Ri_Rj)’ (12)

where (n;71;)¢on, Tepresents the quantum average of n;n; after
subtracting the disconnected term (n;){n;). In addition, 2 (¢)
is related to the local kinetic energy
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FIG. 7. Phase diagram for the disordered Hubbard model in the
paramagnetic sector.

S(q) = =2t 2 {c] e o+ HededFR) — 1), (13)

<i>j,0'

where (i) ; indicates the sum over the nearest neighbors of the
site j. Both 2(¢) and N;(¢g) can be easily evaluated in the
variational Monte Carlo scheme, since they require the com-
putation of equal-time correlations.

The limit for small momenta of Eq. (11) gives important
insights into the local gap, making it possible to understand
if at the Mott transition all sites become localized simulta-
neously, or nonhomogeneous fluctuations are still present. In
Fig. 8, we report the distribution of X(¢), evaluated at the
smallest value of the ¢ available within a 98-site lattice, i.e.,
g=(m/7,m/7). The average value of X;(¢) slightly increases
by increasing U and it has a maximum in the regime U
~ D (similarly to what happens to Nq/|q, see Fig. 6). The
distribution P[2;(¢)] is rather large for small U/t and shrinks
when the interaction strength is increased, in agreement with
the fact that disorder is suppressed by interaction. However,
even very close to the Mott transition, the variance of
P[2,(¢q)] stays quite large, indicating that a considerable
number of sites still has large fluctuations. This fact can be
interpreted as a two-fluid behavior, where a fraction of sites
can be regarded as localized particles, whereas the remaining
ones behave like in the Anderson insulator. Therefore, the
Mott transition is driven by only a fraction of the total num-

40
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FIG. 8. (Color online) Distribution of 2,(¢) evaluated at ¢
=(ar/7,/7). Calculations are done for D/t=5 and N=98 sites.
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FIG. 9. (Color online) The same as in Flg 8 but for the local gap
( )'
J {

ber of sites. For U> U?’”, we recover a situation where all
sites can be ascribed to the Mott phase and P[2;(¢g)] has a
very sharp peak with a small variance. The distribution of
N,(g) is very similar to the one of the local kinetic term. By
contrast, the distribution of the local gap A;(¢) is rather nar-
row for U< UE/H, where for small momenta A (¢) ~0, due to
a vanishing gap in the Anderson phase, see Fig. 9. Neverthe-
less, the distribution has very long tails (with very small
weight), which are related to disorder fluctuations; these tails
tend to be suppressed by increasing the interaction U. For
U> UlcVH, a charge gap opens up in the average density of
states but the size of the gap turns out to be different from
site to site, which implies a rather broad distribution, see Fig.
9.

V. RESULTS: THE MAGNETIC CASE

On the square lattice at half filling, in the absence of
frustration and disorder, an arbitrarily weak repulsive Hub-
bard interaction U is able to induce long-range antiferromag-
netic order. In fact, in this case, the presence of a perfect
nesting in the Fermi surface implies a diverging susceptibil-
ity at Q=(a, ) that, in turn, opens a finite gap at the Fermi
level. Therefore, the ground state is a band insulator for any
finite value of the interaction U>0. By contrast, in the pres-
ence of a local random potential, the charge gap may be
filled by (localized) energy levels, possibly destroying the
long-range magnetic order. Here, we address the important
problem of the competition between Anderson localization
and magnetic order by using our improved variational ap-
proach and allowing for a magnetic Slater determinant |SD)
with € | # € ;. First, we discuss the phase diagram of the
disordered Hubbard model in Eq. (1) with only a nearest-
neighbor hopping ¢. In this case, a finite value of the inter-
action UcAF is needed to have the onset of long-range mag-
netic order: below U?F the system is described by a standard
paramagnetic (compressible) Anderson insulator, above U?F
a finite antiferromagnetic order parameter develops; how-
ever, the excitation spectrum remains gapless and the system
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2D/t3 4 5

FIG. 10. (Color online) Staggered magnetization M and the dis-
connected term of the density-density correlations N‘;‘SC as a func-
tion of U for disorder D/t=5 (upper panel) and as a function of D
for U/t=4 (bottom panel). All calculations have been done for N
=98 sites.

is compressible. By further increasing the interaction U, i.e.,
for U> U?_’H the ground state undergoes a second phase tran-
sition to an incompressible antiferromagnetic insulator with a
finite charge gap. Interestingly, in the paramagnetic Ander-
son insulator, local moments with a finite value of (m;)
=(n;;—n; ) develop, suggesting that itinerant electrons may
not be able to fully screen magnetic impurities created by
disorder.

In the last part, we add a next-nearest-neighbor (frustrat-
ing) hopping #’. Also in this case, we show that the Mott
insulating phase is always accompanied by magnetic order,
although with a sufficiently large ratio t'/t many local
minima appear in the energy landscape, with competing
magnetic properties. In particular, we find that the lowest
energy solution displays magnetic long-range order but many
other disordered states with localized moments may be sta-
bilized.

A. Magnetic phase diagram

Let us now consider large systems. In order to assess the
magnetic properties, we define the total magnetization

M= %{E e“Rilm,), (14)

where m;=n; ;—n; |. In analogy with the clean model, also in
presence of disorder, by increasing the electron-electron re-
pulsion, there is a tendency toward magnetic order at Q
=(ar, ), and, therefore, we concentrate on this value of the
momentum.

In Fig. 10, we report our results for D/t=5 and different
values of the Coulomb repulsion and for U/¢=4 and various
disorder strength. Fixing D/t=5, we find that UfF
=(6.5*0.5)¢, since the magnetization is finite for U> Uf_\F
whereas it vanishes for U< U?F. Moreover, as we discussed
in the previous section, the information about charge fluctua-
tions can be worked out from either N, or the disconnected
term N‘;‘SC. We obtain that Ng‘sc vanishes at UM
=(10.5%0.5)¢, signaling the opening of a charge gap, see
Fig. 10. Remarkably, there is a finite region in which both the
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magnetization and the compressibility fluctuations are finite.
This fact implies a stable regime that shows antiferromag-
netic long-range order without a charge gap. We notice that
this intermediate phase is much reduced when considering
U/t=4 and vary the disorder strength, see Fig. 10. In this
case, we can estimate that D*'=(2.5+0.5)r and DM
=(1.5%0.5)¢t. These results lead to the phase diagram
sketched in Fig. 11. For U=0 the system is a (paramagnetic)
Anderson insulator for every finite disorder D> 0. Instead,
for D=0 the ground state is a Mott insulator with antiferro-
magnetic order for every U>0. When both disorder and in-
teraction are finite, there is an intermediate phase between
the paramagnetic Anderson insulator and the antiferromag-
netic Mott insulator. This phase is characterized by long-
range magnetic order but also by a finite compressibility.
Although some authors identified this phase with a metal,”
we do not find any evidence in favor of it (see below).

Let us now consider in more detail the nature of the
Anderson-Mott transition that emerges from our variational
approach, once we allow for spin-rotational symmetry break-
ing. We would like to remind the reader that, in the paramag-
netic case, the Mott insulator can be obtained only thanks to
a singular Jastrow factor, i.e., v,~ 1/ qz. In this case, the
(paramagnetic) mean-field Hamiltonian (3) is always gapless
and the charge gap opens because of the strong correlations
induced by the Jastrow term. In the magnetic case instead,
two different mechanisms can open a gap: (i) the long-range
charge correlations induced by the Jastrow factor and (ii) the
onset of long-range antiferromagnetic order due to a stagger-
ing of the €,’s. For U<UM=(10.5=0.5)z, the static struc-
ture factor behaves like N, ~ |¢| and the Fourier transform of
the Jastrow parameters llke v e ; on the other hand, for
U> UMI, we have that N, ~¢* and v~ 1/g*. Thus in the
intermediate phase with long -range magnetlc order and finite
compressibility, N,~|g| and v,~1/|g|. In order to under-
stand which is the most relevant ingredient that opens the
charge gap, we calculate the structure factor N, and the dis-
connected term NdlSC close to Mott transmon for the full
variational wave functlon |W)=JG|SD) and for another state
that only contains Gutzwiller terms, i.e.,
Slater determinant |SD) is independently optlmlzed in the
two cases. The results for N, and Ng“c are reported in Fig. 12
and indicate that the behavior for the two states is very simi-
lar; even the critical value U?/H for the Mott transition is the
same in the two cases. Therefore, we can conclude that, in
the magnetic case, the charge gap opens mainly because of

FIG. 12. (Color online) Comparison between the results ob-
tained with the full variational wave function (full circles), contain-
ing both Gutzwiller and Jastrow terms, and the one obtained with
no Jastrow factor but only the Gutzwiller projector (full triangles).

N, is shown in the upper panel and Ngisc in the lower panel.

the presence of the mean-field order parameter. However,
within the correlated wave function |‘I’), the Jastrow param-
eters still behave like v,~ 1/ g* in the Mott phase.

In summary, the following scenario emerges: in the inter-
mediate phase with antiferromagnetic order but finite com-
pressibility, the mean-field density of state is large at the
Fermi level, however, all states are localized; by increasing
the interaction U, the Jastrow factor becomes stronger and, at
the same time, there is a suppression of the mean-field den-
sity of states at the Fermi level; by further increasing U, a
single-particle gap opens and the system becomes incom-
pressible, see Fig. 13. We remark that the tendency toward
metallicity for intermediate values of U/t is suppressed by
the presence of magnetic order: this can be seen by noticing
a reduced density of states at the Fermi level for U/f~8. In
fact, for small values of the interaction, the localization
length is short because of the strong disorder; then it be-
comes larger for higher values of the interaction U due to the
disorder screening and then, at the antiferromagnetic transi-
tion, it decreases again. Moreover, we notice that the single-

0.20 0.30

Uit=11
0.15

0.10

DOS

0.05

0.00

020 | Ult=8 |

DOS

0 A 00
6 -4 20 2 4 6 6 -4 2 0 2 4 6
E/t E/t

FIG. 13. (Color online) Evolution of the DOS of the auxiliary
mean-field Hamiltonian as a function of the interaction U for N
=98 sites. The case with spin-dependent on-site energies €, is
considered.
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FIG. 14. (Color online) Staggered magnetization M (blue tri-
angles) and fluctuations of the local magnetization M (red circles)
as a function of U for disorder D/t=5 (upper panel) and as a func-
tion of D for U/t=4 (bottom panel). Calculations have been done
for N=98 sites.

particle wave functions are more localized in the magnetic
case than in the paramagnetic one, even in the regime of
maximum “delocalization,” i.e., U~ D. Unfortunately, a full
analysis of size scaling of the localization length (by consid-
ering the inverse participation ratio, as used in Ref. 20) is
very hard, because the available sizes do not allow us to
reach definitive conclusions.

Let us now focus on the development of local magnetic
moments in presence of the Coulomb interaction, in order to
demonstrate that they may appear before the metal-insulator
transition. For this issue, we consider the following quantity,
which is related to the fluctuations of the local magnetiza-

tion:
1
M, = \/52 (m)*. (15)

In a paramagnetic state with local moments, namely, a state
in which some sites have an on-site magnetization (m;) # 0,
the total staggered magnetization is vanishing, i.e., M=0,
while M, is finite. On the contrary, in the antiferromagnetic
phase M;=M. Therefore, by comparing M; and M, it is
possible to have a good feeling on the presence of local
moments in the ground state. In Fig. 14, we show the stag-
gered magnetization M and M; both for D/t=5 and different
values of the interaction U and for U/t=4 and different dis-
order strengths D. We find that for U> UfF:(6.5iO.5)t
[and for D <D""=(2.5+0.5)] the two magnetization values
are very close, while in the paramagnetic phase we observe
that M;>M =0. This fact suggests a magnetically disor-
dered phase in which the on-site magnetization {m;) is finite
for some sites. We identify those sites with (m;) # 0 as local
magnetic moments. The existence of such moments can be
extracted from the pattern of the on-site magnetization {m;)
(as shown in Ref. 38) or from the probability distribution of
|<m,-) , see Fig. 15. Here, we observe that for small interaction
values, U/t~ 3, the distribution has a narrow peak in corre-
spondence of |(m;)|=0, however, at the same time, it has long
tails indicating the presence of local moments. In this re-
gime, the ground state is an Anderson insulator with a large
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FIG. 15. (Color online) Probability distribution of the absolute
value of the on-site magnetization |(m;}| for N=98, D/t=5 and
different values of the interaction U/t.

number of paramagnetic sites and (n;)=0,1,2. For U= U~F
the distribution is spread between 0 and 0.8, with a peak in
correspondence of [(m,)| ~ 0. This fact highlights the coexist-
ence of paramagnetic sites with local magnetic moments;
these sites are not spatially correlated hence long-range mag-
netism is absent. By increasing the interaction strength, the
peak at |{(m;)| ~0 disappears and the one at |(m;)|~1 be-
comes more pronounced; in this case, local moments even-
tually display the typical staggered pattern of Néel order.
Nevertheless, charge excitations are still gapless and N,
~|g|. Finally, in the Mott insulating phase the distribution
has a narrow peak at |[(m;)|=1.

B. Frustrating case

In the previous section, we showed that a disordered sys-
tem of electrons on a square lattice undergoes a magnetic
transition before becoming a Mott insulator. Therefore, the
Mott insulator is generically accompanied by magnetic order.
However, in disordered materials, one could expect that
long-range order may be strongly suppressed, leading to a
bona-fide Mott transition, where the incompressible phase
has no magnetic order. In this sense, the presence of a next-
nearest-neighbor hopping ¢’ may help to approach the Mott
phase without any spurious magnetic effects. Indeed, this
kind of frustrated hopping generates, in the strong-coupling
regime, a superexchange term J' that competes with the
nearest-neighbor one J.

First of all, we notice that a finite frustrating ratio t'/¢
generates very complicated energy landscapes, with many
local minima. Furthermore, in contrast to the unfrustrated
model, where different local minima share very similar
physical properties, here different starting points in the pa-
rameter space may give rise to rather different wave func-
tions, especially in the intermediate and strong-coupling re-
gimes. Concerning the starting point for the energy
optimization, we will consider (i) a paramagnetic point with
€,=¢ . (i) a staggered point with € ,=€+o(-1) 5+l 5, and
(iii) a collinear point with € ,= a(—=1)kil. Notice that, in the
latter case, the starting choice breaks both translational and
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FIG. 16. (Color online) Collinear magnetization M (upper
panel) and the disconnected term of the density-density correlations
N‘;‘SC (lower panel) of the lowest energy solution as a function of U
for D/t=5 and t'/t=1. The shaded area indicates the region where
paramagnetic and magnetic solutions have similar energies.

rotational invariances, so to favor collinear magnetic order
with Q=(,0), which is suitable for large #'/¢. Similarly, we
can also consider €; ,= o(=1)Pi, which gives rise to a collin-
ear order with Q=(0, 7). In all these cases, each local energy
€, (for up and down spins) is independently optimized, in
order to achieve a full energy minimization.

For weak and intermediate frustrations, the outcome is
rather similar to the case with ¢’ =0, except for U~ U?F . For
instance, for t'/t=0.6 and D/t=5, the paramagnetic Ander-
son insulator is stable for U< U?Fz6t. Up to this value of
the Coulomb interaction, the energy of the converged state
does not depend on the choice of the starting point (as for the
unfrustrated case) and there is no evidence for any nontrivial
magnetic pattern. On the contrary, for 6 <U/¢<<12, different
results for the staggered magnetization are found when we
initialize according to (i) or (ii). In particular, the magnetiza-
tion is strongly suppressed when considering a paramagnetic
initial condition. These different solutions are very close in
energy up to U==8t, even though, usually, the lowest mini-
mum shows long-range order and finite compressibility; for
larger values of the interactions, i.e., 8<<U/t<<12, the mag-
netic state gives definitely the best energy. By further in-
creasing the Coulomb repulsion, namely, for U> U?/H: 12¢,
the system becomes a Mott insulator with Néel order at QO
=(,m). These results suggest that, for a finite frustrating
ratio, the magnetic transition may become weakly first order
(with a regime in which there is a coexistence of different
phases).

The existence of a finite region with nearly degenerate
states with different magnetic properties is even more pro-
nounced in the strong frustration regime. For ¢’ =¢, the solu-
tion obtained starting from (ii) gives always a higher energy
with respect to (i) and (iii), demonstrating that the Néel state
is clearly disadvantaged. Again, in the weakly correlated re-
gime, ie., U< UCA_F =8¢, paramagnetic and magnetic starting
points give similar energies and magnetization patterns. For
U> UICVHZ 13¢, the ground state is a gapped insulator with
NEs=0, see Fig. 16. Instead, in the intermediate region, for
UZ*F< U< UIL\_/H, the energy landscape shows different
minima, which are nearly degenerate up to U= 11¢, whereas,
for larger interactions, the wave function with collinear order
gives the best approximation for the ground state, with a
clear long-range magnetic order, see Fig. 16.

PHYSICAL REVIEW B 81, 075106 (2010)

The remarkable feature is that, in a wide range of Cou-
lomb repulsions, it is possible to find low-energy states just
by starting from a paramagnetic wave function. This choice
gives rise to patterns in which most of the sites have a net
magnetization but an overall vanishing magnetic order. For
U/t~ 16, these solutions are incompressible, i.e., NS'S°~0
and, therefore, may be viewed as disordered Mott insulators.
By decreasing the interaction strength, these states turn com-
pressible, still having a large number of local moments. The
presence of these metastable solutions, which are almost de-
generate with the magnetically ordered wave function, sug-
gests a sort of “spin-glass” behavior. The existence of a large
number of such disordered states prevents one to have a
smooth convergence to the lowest energy solution, by start-
ing from a generic configuration.

In summary, the frustrating hopping ¢’ has two primary
effects. The first one is the narrowing of the stability region
of the magnetic Anderson insulator. In addition, we have
evidence that the magnetic transition turns to be first order, in
contrast to the unfrustrated case. The second and most im-
portant effect of a frustrating hopping term is the develop-
ment of a “glassy” phase at strong couplings, where many
paramagnetic states, with disordered local moments, may be
stabilized. Although we do not find any evidence in favor of
the stabilization of a true (nonmagnetic) Mott phase, this
possibility cannot be ruled out in the whole phase diagram.

VI. CONCLUSIONS

In this paper, we have studied, by means of a variational
Monte Carlo technique, zero-temperature properties of the
disordered two-dimensional Hubbard model at half filling.
First of all, we showed that a variational wave function is
able to describe the Anderson-Mott transition without any
symmetry breaking, i.e., a transition from a paramagnetic
Anderson insulator to a paramagnetic Mott insulator. This is
achieved thanks to long-range charge correlations induced in
the wave function by a Jastrow factor. We showed that the
transition can be easily detected within variational Monte
Carlo by looking at the behavior of the static structure factor
and of the Fourier transform of the Jastrow parameters,
namely, following the same criteria for the Mott transition in
a clean system. Moreover, we found that the disconnected
term of the density-density correlation function, i.e.,
lim[ﬁ0<n_q)(nq>, acts as an easily accessible order parameter
for the Anderson-Mott transition. We found that electron-
electron repulsion partially screens disorder: for strong inter-
action electrons feel an effective weak disorder potential that
should imply an interaction-increased localization length.
However, once the interaction exceeds a critical value, a gap
opens and the model turns into a Mott insulator. From our
numerical calculations, the ground state is always insulating,
yet, upon increasing the strength of interaction, the localiza-
tion length may have a nonmonotonous behavior when we
consider the full variational wave function.

When magnetism is allowed, a compressible and mag-
netic Anderson insulating phase appears between the com-
pressible paramagnetic Anderson insulator and the incom-
pressible magnetic Mott insulator. When magnetism is not
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frustrated, all transitions are likely to be continuous. On the
contrary, when frustration is included by means of next-
nearest-neighbor hopping, the paramagnetic to magnetic
transition turns first order. Moreover, in the magnetic region,
it is also possible to stabilize many paramagnetic solutions
with very low energy, suggesting a glassy behavior at finite
temperature. Indeed, all these paramagnetic states have local
moments, i.e., magnetic sites that would contribute with a
finite —kp In 2 term to the entropy at finite temperature. The

PHYSICAL REVIEW B 81, 075106 (2010)

fact that, in this simple two-dimensional model, we find local
moments in the paramagnetic phase may suggest that this is
a general feature of disordered systems close to a Mott tran-
sition.
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